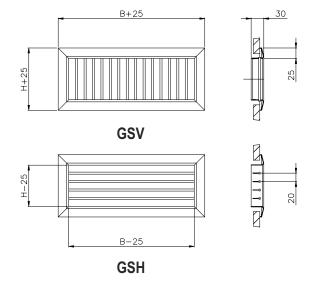
GSV-GSH GRELHAS DE SIMPLES DEFLEXAO

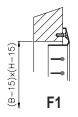
APLICAÇÃO

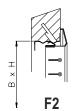
- São empregadas no insuflamento e na exaustão de ar em sistemas de ventilação e ar condicionado
- Montagem em tetos ou paredes

DESCRIÇÃO

- Fabricadas com perfis de alumínio de desenho exclusivo se armonizam perfeitamente, nos modernos ambientes
- Possuem aletas moveis, verticais (GSV) e horizontais (GSH), ajustáveis individualmente, que permitem regular alcance, altura ou largura do fluxo de ar
- Como padrão, são fornecidas anodizadas na cor natural (A) e com furos na moldura externa para fixação por parafusos (F1).
- Sob consulta, são disponíveis com fixação por molas (**F2**) nao recomendada em tetos fixação invisível (**F3**) e com pintura em epóxi-pó (**P**) cor definida pelo cliente


ACESSÓRIOS


- Registro de regulagem de fluxo (**RGD**), com moldura em aço, aletas convergentes, e pintura na cor preta
- Captor de ar (CA), em aço galvanizado e pintura na cor preta
- Moldura de montagem (MM) em aço galvanizado e pintura na cor preta. De emprego obrigatório com a fixação F2 e F3


DIMENSIONAMENTO RÁPIDO

a) Vazão - insuflamento

- A Tabela 1 lista as dimensões padrão, a vazão recomendada de ar Qn para cada tamanho e o respectivo alcance Ln do jato de ar isotérmico para Vt=0,5 m/s, com aletas a 0° de inclinação (com influencia do teto - efeito Coanda)

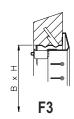
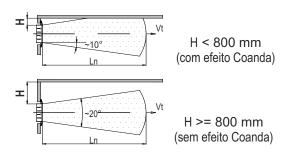


Tabela 1

Vazão Nominal Qn (m3/h) x Alcance Lt (m)										
Н		B (mm)								
(mm)		225	325	425	525	625	825	1025	1225	
425	Qn	190	290	385	480	580	770	965	1160	
125	Ln	4,7	5,7	6,4	7,1	7,6	8,5	9,2	9,7	
225	Qn	370	560	745	935	1120	1495	1870	2245	
225	Ln	6,7	8,2	9,3	10,3	11,1	12,6	13,8	14,9	
225	Qn	555	830	1110	1390	1665	2225	2780	3335	
325	Ln	8,2	9,9	11,4	12,7	13,8	15,7	17,4	18,8	
425	Qn	735	1105	1475	1840	2210	2950	3685	4425	
425	Ln	9,4	11,5	13,2	14,7	16,0	18,3	20	20	
E25	Qn	915	1375	1835	2295	2775	3675	4595	5515	
525	Ln	10,6	12,9	14,9	16,5	18,0	20	20	20	

Dimensoes nao indicadas disponiveís sob consulta

GSV-GSH GRELHAS DE SIMPLES DEFLEXAO


DIMENSIONAMENTO RÁPIDO

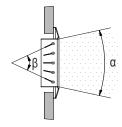
a) Vazão - insuflamento (continuação)

- Para obter o alcance Ln2 , na ausência de efeito Coanda, ou para outras velocidades terminais Vt do jato de ar, deve-se multiplicar Ln pelos fatores de correção da Tabela 2

Tabela 2

	0,2	0,35	0,50	0,65		
Com Coanda	H=0,3 Ln2 = Ln x		2,50	1,43	1,00	0,77
	H=0,5	Ln2 = Ln x	2,20	1,26	0,88	0,68
	H=0,7	Ln2 = Ln x	1,88	1,07	0,75	0,58
Sem Coanda	H>=0,8	Ln2 = Ln x	1,75	1,0	0,70	0,54

- O alcance do jato de ar Lr, para grelhas operando com vazões Qr diferentes de Qn, é igual a:

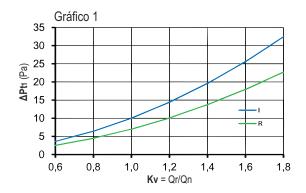

$$Lr = Kv \times Ln$$
 onde

$$Kv = \frac{Qr}{Qn} = \frac{\text{vazão efetiva na grelha}}{\text{vazão nominal - Tabela 1}}$$

- Alterando a inclinação das aletas das grelhas GSV e GSH, podemos alterar a amplitude do jato de ar. Nestes casos, conforme o angulo de inclinação β , os valores de Ln, ΔPt e Lwa devem ser multiplicados pelos fatores de correção da Tab 3

Tabela 3

	1 - 1 - 1 - 1 - 1										
β	α	Ln	ΔPt	Lw							
45°	35°	x 0,7	x 1,3	+ 3							
90°	60°	x 0,5	x 1,6	+ 5							



b) Vazão (retorno)

- As grelhas GSV e GSH são também largamente empregadas no retorno do ar. Neste caso, a vazão nominal recomendada é a mesma listada na Tab 1 (Qn) e os valores de perda de carga e nível sonoro são dados em c) e d) a seguir

c) Perda de carga

- A perda de carga ΔPt , na vazão de operação Qr , segundo o sentido do fluxo de ar, - insuflamento (I) ou retorno (R) -, é obtida no Gráfico 1 em função de Kv

d) Potencia sonora

 O nível de potencia sonora real, Lwr, nas condições de operação de cada grelha GSV ou GSH, é igual ao valor Lwa obtido no Gráfico 2, (conforme I ou R e Kv), somado ao fator de correção Ks, obtido na Tab 4, segundo suas dimensões B e H

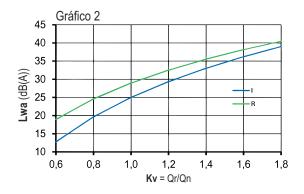


Tabela 4

	Fator de Correção Ks (dB(A))									
Н	B (mm)									
(mm)	225	225 325 425 525 625 825 1025 1225								
125	-9	-7	-6	-5	-4	-3	-2	-1		
225	-6	-4	-3	-2	-1	0	1	2		
325	-4	-2	-1	0	1	2	3	4		
425	-3	-1	0	1	2	3	4	5		
525	-2	0	1	2	3	4	5	6		

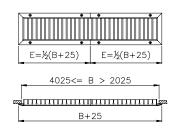
GSV-GSH GRELHAS DE SIMPLES DEFLEXAO

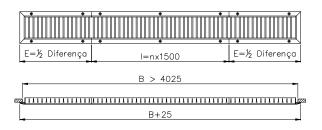
e) Determinação da Vazão efetiva

- Para avaliar a Vazão real Qr a que esta submetida uma grelha deve-se, inicialmente, medir a velocidade de saída do ar em vários pontos de sua face e em seguida calcular a velocidade media Vm (m/s), do fluxo de ar.

Com Vm e Aeff, area efetiva da grelha obtida na Tab 5, tem-se:

 $Qr = Vm \times Aeff \times 1000$ (l/s) ou, $Qr = Vm \times Aeff \times 3600$ (m3/h)

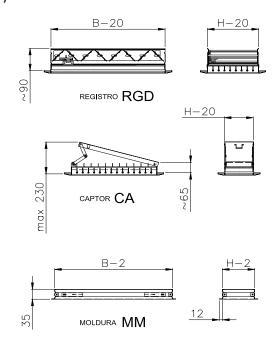

Tabela 5


Área Efetiva Aeff (m2)									
Н		B (mm)							
(mm)	225	225 325 425 525 625 825 1025 1225						1225	
125	0,015	0,023	0,031	0,038	0,046	0,061	0,077	0,092	
225	0,030	0,045	0,060	0,074	0,089	0,119	0,149	0,179	
325	0,044	0,066	0,088	0,110	0,132	0,177	0,221	0,265	
425	0,059	0,088	0,117	0,146	0,176	0,234	0,293	0,351	
525	0,073	0,109	0,146	0,182	0,218	0,292	0,365	0,438	

f) Grelhas continuas

- As grelhas GSV e GSH são fabricadas em uma única peça, até a dimensão nominal B = 2025 mm

Acima dessa dimensão, são disponíveis grelhas GSV fabricadas em partes, para união no local da instalação, como ilustrado a seguir. A fixação é sempre feita com parafusos aparentes (F1)



g) Grelhas com registro RGD


- Para obter a perda de carga total Δ Pt2 e a potencia sonora total Lwa2, segundo o grau de abertura do registro, deve-se aplicar os fatores de correção da tabela abaixo, aos valores Lwa e Δ Pt obtidos para as grelhas sem registro.

GRAU DE ABERTU	IRA DO REGISTRO	100%	50%	25%
I Insufferent	$\Delta Pt2 = \Delta Pt x$	1,0	2,5	5,3
I - Insuflamento	Lwa2 = Lwa +	0	14	24
R - Retorno	$\Delta Pt2 = \Delta Pt x$	1,0	2,3	5,7
R - Retorno	Lwa2 = Lwa +	0	6	12

h) Detalhes dos acessórios

- 1- Modelo
- 2- Acessório
- 3- Dimensão B x H
- 4- Fixação
- 5- Acabamento

OBS: Códigos de característica padrão podem ser omitidos